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Abstract

Turbulent convective heat transfer is modeled for developing flow of water near the thermodynamic critical point in
a constant wall temperature vertical tube with and without buoyancy force. Wall temperature effects on momentum and
heat transfer, velocity profiles, property variation, heat transfer coefficient, and friction factor distribution close to the
inlet (z/D < 10) are discussed. Flow acceleration near the wall increases near the critical pressure. Local axial fluid
temperature decreases are observed, apparently due to local radial velocity carrying cool core fluid towards the tube
wall. Comparison among models for turbulent Prandtl number shows less influence on momentum than heat transfer.
© 1998 Elsevier Science Ltd. All rights reserved.

Nomenclature u velocity in axial direction [m s~ ']

C, specific heat at constant pressure [J kg™' K '] v velocity in radial direction [m s~ ']

D tube diameter [m] vy radial distance from the wall [m]

ffriction factor = 81,/(pyud) y* non-dimensional radial distance from the
g acceleration due to gravity [m s~ wall = 1—(r/R)

G mass flux [kgm=2s7] y*  dimensionless distance from the wall = y./pt, /1’
Gr.  Grashof number = pygL®|py — p |/ 142 z axial coordinate [m].

h  heat transfer coefficient [W m 2 K /]

i enthalpy [J kg™'] Greek symbols

k  thermal conductivity [W m~" K '] grid non-uniformity parameter

K non-dimensional compressibility compressibility [K ~']

I, mixing length [m)] turbulent diffusivity [m*s~']

L tube length [m] non-dimensional temperature = (7— 7T},)/(Tw— T},)
P

Pr Prandtl number = uC,/k density [kg m™?)
Py reduced pressure = P/P, shear stress [N m ]

O heat flux [Wm™?] function variable.
r radial coordinate [m]

o
B
I3
0

pressure [Pa] u absolute viscosity [kg s~ m™']
p
T
¢

R radius of tube [m] Superscripts and subscripts
Re Reynolds number = GD/u b bulk condition

Re;.  Reynolds number = (L/D) Re ¢ critical point value

T temperature [K] H heat

i iteration
in inlet condition
M  momentum
* Corresponding author. Fax: 001 512 471 1045; e-mail: pc pseudocritical point
jhowell@mail.utexas.edu t turbulent flow
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w wall condition
*  property ratio with inlet value.

1. Introduction

Above but near the thermodynamic critical point, ther-
modynamic and transport variables show anomalous
characteristics. A graph of temperature vs. entropy near
the critical point for water is shown in Fig. 1 for various
pressures. Entropy increases with an increase of tem-
perature, and as pressure approaches the critical pressure
the gradient becomes steeper.

For fluids near the critical point, the characteristics of
heat and momentum transfer are complicated by the large
variation in density, specific heat, viscosity, and thermal
conductivity with pressure and temperature. When the
temperature of the fluid is near the pseudocritical point,
phase transition-like phenomena occur across the steep
property variations that occur between liquid-like and
gas-like behavior. There is a peak in specific heat and
thermal conductivity at this boundary-like temperature.
The peak in viscosity is much smaller and is usually
neglected. Specific heat has a more pronounced peak than
thermal conductivity, and both of these peaks increase
very rapidly as the pressure approaches the critical value.

Figure 2 shows the density variation of water in the
critical region for several pressures. Density decreases
with increasing temperature and the variation becomes
steeper as the pressure approaches the critical point
(T.,=647.07 K, P,=22.05 MPa). The density at the
pseudocritical temperature increases very slowly with
increasing pressure. Above 30 MPa, the variation is
smooth although specific heat still has a non-negligible
peak at the pseudocritical temperature. The pseudo-
critical temperature at which there is a large peak
increases with increasing pressure. The near-linear
relationship between pseudocritical temperature and
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Fig. 1. Temperature—entropy chart for water near critical point.
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Fig. 2. Water density variation with temperature for several
pressures near the critical point.

pressure is shown in Fig. 3 from an interpolation equation
in the range of 1 < Py < 1.5.

Fundamentally, the variations in properties are
coupled with momentum and heat transfer characteristics
in the fluid flow through the thermodynamic state vari-
ables of temperature and pressure. The highly non-linear
variation in these properties makes flow phenomena
more unpredictable compared with the constant property
case.

A large amount of experimental and theoretical
research has been carried out to study heat transfer
phenomena near the critical point in a tube because of
applications in power generation systems, rockets, and
superconductor systems. Before the mid 1970s, research
provided experimental data, correlations for the heat
transfer coefficient, and theoretical analyses for use in
design [1-6]. Investigators tried to understand the physi-
cal phenomena and understand the difference between
the results for constant properties and variable properties
near the critical point. The suggested correlations for
heat transfer coefficient included additional parameters
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Fig. 3. Variation of pseudocritical temperature with reduced
pressure for water.
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or changes in the coefficients of the constant-property-
based equations to account for the effect of property
variations. However these correlations are not consistent.
They produce poor predictions if the fluid is changed or
variable ranges of the original data used for the cor-
relation are exceeded.

Some studies [2] suggested that heat transfer charac-
teristics near the critical region resemble boiling because
of the steep variation of properties between liquid-like
behavior and gas-like behavior. The theoretical models
tried to describe the heat transfer phenomena by includ-
ing a phase related parameter, but some later research
rejects this model because a supercritical fluid in equi-
librium is truly single phase, but the pseudoboiling model
assumes it is not. Visual studies [5] of the flow field do
not detect bubble-like phenomena near the critical region.

Since the 1970s, some experimenters have measured
the heat transfer coefficient and wall temperature dis-
tribution along a uniformly heated tube [7-12]. They
aimed to explain the phenomenon of deterioration of
heat transfer coefficient for turbulent flow in a vertical
tube, which is related to steep property variations. They
also tried to find the parameter values that provide
improved heat transfer near the pseudocritical tempera-
ture. With the development of computers, numerical
analyses [13-21] can predict heat and momentum transfer
by solving the coupled governing conservation equations
simultaneously with property variations. They show the
effect of properties on convection heat transfer and the
heat transfer coefficient distribution along the tube. A
large heat transfer coefficient is predicted when the fluid
temperature is near the pseudocritical temperature. Grav-
ity has an important influence on heat transfer in a ver-
tical tube because of the steep variations in density near
the pseudocritical point. This influence is a factor in the
observed local deterioration in the heat transfer
coefficient. Most of the predictions are qualitatively in
accord with experimental results but quantitatively there
are some differences. The predictions for turbulent flow
are usually based on the mixing length or x—¢ models,
and some have introduced modifications in modeling
compared with standard constant-properties models [14,
15]. These models are intended to investigate temperature
and velocity distributions along the tube as well as heat
transfer coefficient and wall temperature distributions.
However, because of the lack of experimental data inside
the flow field, it is difficult to verify the predicted flow and
heat transfer phenomena. Many predictions for turbulent
flow are obtained with a constant-property-based model
so property variation effects on thee models are still not
well understood.

In previous work, we investigated convective transfer
at near-critical-point conditions for fluids in laminar flow
with and without the effect of a gravitational field [20,
21], and we examined turbulent flow in a vertical tube
using a mixing-length model including comparisons with
existing experimental data [23].

In this study, convection heat transfer phenomena in
the entrance region of a vertical tube for water near
the critical point is predicted by numerical simulation in
order to understand momentum and heat transport inside
the tube with property variations. A two-dimensional
model to solve the governing conservation equations of
motion and energy is established and numerically solved.
The model includes the effect of thermodynamic and
transport properties. In order to understand the effect of
the property variations on turbulent Prandtl number in
modeling of turbulent flow of near-critical fluids, several
models are applied and the predicted results are
compared. This helps to predict and understand the
momentum and heat transfer in the entrance region of a
tube for fluids near their critical point.

2. Numerical modeling

For flow in a vertical tube, momentum and heat trans-
fer are described by the two-dimension conservation
equations. Flow is assumed to be axisymmetric and ste-
ady state, and the tube is smooth. For thermodynamic
and transport properties, water is assumed to be in local
thermodynamic equilibrium. The governing conservation
equations of continuity, momentum, and energy are:

Continuity

V-pV =0. 1)
Momentum

V-pVV = —VP+V-1+pg. )
Energy

e T A T O el 2D
A R =

PP 6

+p, THe O

where @ is viscous dissipation. All properties of water are

calculated at the local temperature and pressure in the
flow field.

The mixing length model suggested by Bellmore and
Reid [14] is used in this study for the calculation of
turbulent transport. The turbulent viscosity is expressed
in this model as

ou B ln 0i B L, oY
[l B <Cp Pr, (7y>_ <Cp Pr, 6y> :| @

ay

This modified form of the mixing length model includes
the effect of density fluctuations on turbulent transport.
A typical two layer model is used for mixing length cal-
culations. The turbulent Prandtl number &y,/& is assumed
to be 0.9 in most of the calculations [16, 18, 19] and three
other models of turbulent Prandtl number are used in
several cases to see the effect of turbulent Prandtl number
on the heat transfer. These models are

o= ply,
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1. Reynolds analogy
Pr,=1.0. 5)
2. Kays and Crawford [23]

1
Pr = . ()

I 1 ,
{ﬁ +(0.3Pe) [ges—(0.3Pe)

x [1 —exp <— \/ﬁs(lospel)ﬂ}

3. Kays [24]
Pr,=2.0/Pe,+0.85 @)
where
Pe, = (/) Pr. )

As flow boundary conditions, uniform radial inlet vel-
ocity and temperature are assumed. Constant tem-
perature is applied at the tube wall and the symmetry
condition is used at the centerline of the tube. At the
exit boundary of the tube, the dependent variables are
extrapolated linearly to provide the axial downstream
conditions.

In this study most cases considered have inlet fluid
temperature below both the pseudocritical temperature
at the specified inlet pressure and the critical temperature,
which are in turn lower than the wall temperature. Hence
there is large variation in the properties between the wall
and centerline of the tube. All thermodynamic and trans-
port properties for water are calculated with the program
of Lester et al. [25]. If there is any recirculation due to
large buoyancy force near the wall, this model is not
appropriate. Hence any case with flow recirculation in
the tube is not considered in this study. If the tube is long
enough, recirculation will occur and the flow will have
complicated unsteady characteristics, and will also prob-
ably be three-dimensional.

3. Solution procedure

Equations (1)—(3) are solved numerically by the finite
difference control volume method, SIMPLE procedure
[26] with the appropriate boundary conditions. The con-
verged solution is obtained when the following con-
vergence criteria are satisfied for the dependent variables.

‘4)[“_(/)[

¢

This calculation is for low Reynolds number tur-
bulence modeling because the effect of property variation
cannot be neglected near the wall and it is not possible
to apply the wall function in that region [19]. Hence the
grid must be very fine near the wall in order to apply
Couette flow in the laminar sublayer
(y* =y/pr/u* <5). For this calculation an axially

<107% ¢ =u,v, and i 9)

and radially non-uniform orthogonal grid system is used.
The following relations [27] are used in the radial and
axial grid system,

e (o +1) — (o, = D{[(2, + D)/(er, = D]' '}
[(a)‘+ 1)/(05) - 1)] ! 7F+ 1

Lo (et —(e— D{[(+1D/(x.—D]' 7}
[(+ D)/ — D] 7 +1

where 7, 7 is the uniformly distributed grid system. This

system clusters the grid in the region near the entrance

and near the tube wall as o, and o. approach unity.

For the most calculations with L/D = 10, a grid of
200 x 100 (axial x radial) is used. Grid dependence of the
solution was checked by refining the radial and axial grid
system. The values of non-uniformity parameters, o, and
o. are 1.001 and 1.5, respectively, to give enough grid
points near the wall and entrance of the tube where there
are large variations in flow and heat transfer variables.
The effect of the extrapolation boundary condition at the
exit of the tube was checked by increasing the L/D to
larger values and checking for changes at upstream
locations.

(10)

(11)

4. Results and discussion
4.1. Comparison with other modeling

To verify the results from our model, we compared
them with the numerical results of Zhou and Krishnan
(1995) [19]. The geometry considered is a two-dimen-
sional symmetric channel flow with gravity in the
developing region. The supercritical fluid considered by
Zhou and Krishnan is carbon dioxide and its local
properties are calculated [28] (all other results shown in
this paper are for water). Figure 4 shows comparison of
velocity, temperature, and density distributions inside the
channel. With heat transfer from the wall at constant
heat flux, the fluid temperature increases beyond the
pseudocritical temperature near the wall and there is a
flow acceleration near the wall due to buoyancy force. It
can be seen that the two predictions agree well. We earlier
compared our numerical model to experimental results
[22].

We now proceed to the vertical tube geometry using
water as the working fluid for conditions near the ther-
modynamic critical point.

4.2. Effect of pressure on buoyancy force

At pressures near the critical pressure (P, = 22.05
MPa), water near the constant-temperature hot wall in
the vertical tube accelerates in the axial direction and
incurs a steep velocity gradient. This is due to the increase
of the buoyancy force, which results from the density
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Fig. 4. Comparison of this modeling prediction with [19] for velocity, temperature, and density distributions in a channel for upward

flow of CO,.

difference between the wall and bulk fluid (inlet) tem-
perature (Fig. 2). A bulk buoyancy force parameter for
the entrance region and high velocity considering bound-
ary layer development, Gr, /Rei can be represented as

Gry _ pbgAL  pigApL

(12)
Re} G? G?
where the density difference is
Ap =(pw—pv) (P —Pin)- (13)

This buoyancy force parameter considers density differ-
ences between the bulk fluid and the fluid at the wall. As
can be seen in equations (12) and (13), density difference
and mass flow rate are the most important parameters
in the buoyancy force. Since density variation near the
pseudocritical point is locally very steep, it should be
considered as another parameter affecting the buoyancy
force when the pseudocritical temperature is between the
wall and bulk temperatures. Although the region with
steep density variation is very narrow and close to the
wall, it can generate a large buoyancy force which results
in flow acceleration as well as heat transfer enhancement.
The maximum non-dimensional density gradient with
temperature in a cross section of the tube is

K=
Ap (ow— Pin)

(14)

max max

Figure 5 shows the effect of pressure on the buoyancy
parameter of equation (12) and the density gradient for
constant inlet and wall temperatures. As the pressure
increases, the effect of buoyancy force decreases because
of the decrease in the density variation with temperature.
The buoyancy parameter of equation (12) for P = 1.020

30—
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25 | ResC Gr /Re,*|
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GrL/ReL2 &K

1.5

Fig. 5. Variation of buoyancy force parameters with pressure
for water.

is about two times that for Py = 1.361. The parameter for
Py = 1.361 is about 9.6 and, from an order of magnitude
analysis, free convection effects on fluid flow and heat
transfer still cannot be neglected.

Higher acceleration near the wall results in an increase
of heat transfer coefficient. The temperature which has
the maximum density gradient is a little lower than the
pseudocritical temperature and the temperature differ-
ence increases as the pressure increases. It increases very
steeply as the pressure approaches the critical point com-
pared with the buoyancy parameter of equation (12).
Axially and radially the pressure drop in the tube is very
small because of small L/D being considered, so the effect
of pressure on property variations in the tube is negligible
compared with that of temperature,

Distributions of axial velocity and thermodynamic
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properties (e.g., density and specific heat) of water inside
a vertical tube for two pressures are shown in Figs 6
and 7. With higher buoyancy effect due to larger density
variation between the wall and bulk fluid as well as lower
viscosity, the fluid near the wall is accelerated more at 24
MPa than at 28 MPa. There are steep variations in fluid
properties in a narrow region close to the wall. The
specific heat of water is larger at 24 MPa, with a more pro-
nounced peak value. Because of the higher pseudocritical
temperature at 28 MPa, the location of the peak in spec-
ific heat (and thus fluid enthalpy) is closer to the wall.
This combination of high acceleration of the fluid and
large specific heat act to increase the turbulent transport.
This improves the heat transfer even though the thermal
conductivity of fluid at the wall is low. Hence, both the
fluid density and specific heat (enthalpy) increase faster
at 24 MPa between the two axial positions (z/D = 1.0
and 4.0) due to this higher heat transfer, which is reflected
in a greater fluid temperature increase.

Heat transfer coefficient distributions along the tube
for various pressures with or without the effect of the
gravity force term are shown in Fig. 8. The heat transfer
coefficient, & is shown rather than Nusselt number,
because the value of thermal conductivity varies with
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Fig. 6. Comparison of predicted velocity distributions in a tube
for upward flow of water; Re = 5x 10%, T}, = 633 K, T, = 673
K.
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Fig. 7. Comparison of predicted density and specific heat dis-
tributions in a tube for upward flow of water; Re = 5x 10%,
T, =633K, T, =673 K.

inlet pressure and thus obscures understanding of the Nu
variation. Near the entrance of the tube (z/D < 0.5) for
upward flow the heat transfer coefficient decreases very
rapidly. In this region there is not much difference in
the heat transfer coefficients at different pressures. Heat
transfer coefficients at larger z/D start to increase due
to the buoyancy effect, and the starting location of the
increase along the tube moves closer to the entrance as
the pressure approaches the critical pressure (z/D = 1.5
for P=25 MPa and z/D=15.5 for P=30 MPa).
Although the tube region considered is short, at
z/D = 5.0 the heat transfer coefficient for P = 25 MPa
is about 25% higher than for P = 30 MPa. From this
location, the heat transfer coefficient increases almost
linearly along the tube, and the difference in the heat
transfer coefficients for various pressures also increases
along the tube.

For flow neglecting the gravity force term, there is less
variation in the heat transfer coefficient distributions as
the pressure in the tube changes. Close to the entrance of
the tube, (z/D < 6), the heat transfer coefficient increases
with increasing pressure due to the fluid thermal con-
ductivity increase at the wall. Downstream, (z/D > 6),
the heat transfer coefficient increases with the pressure
because the effects of both bulk fluid acceleration (due to
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Fig. 8. Heat transfer coefficient distributions along a tube in
upward and without-gravity flow of water for various pressures;
Re=5x10, T, = 633K, T,, = 673 K.

density decrease) and increasing turbulent transport
(with increased specific heat) become more important.
Comparison of the results with and without gravity shows
that buoyancy force due to density variation has an
important effect on heat transfer in the tube compared
with other property variations and its effect becomes even
more important as the flow rate decreases. Because of
the non-linear variation of thermodynamic and transport
properties with pressure and temperature for near critical
fluids, momentum and heat transfer are coupled through
the properties. It is difficult, therefore, to find a relation
between heat transfer coefficient and the buoyancy force
parameter as suggested by equation (12).

4.3. Wall temperature effect

The buoyancy force depends on temperature level and
wall-fluid temperature difference as well as pressure.
Because of the non-linear variation of properties with
temperature near the pseudocritical temperature for a
specified pressure (Fig. 2), the usual Boussinesque
approximations [23] cannot be applied. In particular,

the density gradient with temperature (compressibility)
is high at the pseudocritical temperature, and as the
pressure increases the gradient at the pseudocritical tem-
perature decreases. The buoyancy force thus depends on
the magnitude of temperature and pressure in addition
to the temperature difference. Table 1 shows the values
of the buoyancy force parameter, Gr,/Rei for several
wall temperatures with thermal conductivities and
dynamic viscosities evaluated at the wall temperatures.
All of the buoyancy force parameter values are larger
than unity so buoyancy effects cannot be neglected in the
entrance region at these conditions regardless of Rey-
nolds number. The parameter values at wall temperatures
equal to the pseudocritical temperature, 7,, and 673 K
are about five and eight times higher than at 643 K.

The Grashof number variation with wall temperature
is non-linear due to the dependence of the thermophysical
properties on temperature. Although density difference
is the main driving force for buoyancy, other property
variations cannot be neglected because fluid flow and
heat transfer are coupled through the thermodynamic
and transport properties.

The distributions of heat transfer coefficient for various
wall temperatures are shown in Fig. 9. When the wall
temperature is 643 K, the heat transfer coefficient
decreases almost continuously along the tube. As the wall
temperature increases above the pseudocritical tempera-
ture, the heat transfer coefficient goes through a mini-
mum near the entrance of the tube. As the wall tem-
perature increases past the pseudocritical temperature,
the thermal conductivity at the wall decreases, then
increases a little near the pseudocritical temperature, and
then decreases again. The thermal conductivities at the
pseudocritical temperature, T,., and at 673 K are about
2 and 64% lower than the values at 643 K. Because
of the high flow velocity and short length of the tube,
(L/D = 10), the increase of the bulk fluid temperature is
small compared with the temperature difference between

Table 1

Buoyancy force parameter dependence on the wall temperature
with transport properties at the wall for water; Re = 5x 10%
P=24MPa, T,, = 633K

T,

(K) Gru/Ret kS (=holkin) g (=ko/kin)
643 2.210 0.934 0.904

648 3.976 0.896 0.831

653 8.062 0913 0.675

T, (=654)  10.71 0.917 0.583

658 14.96 0.559 0.463

663 16.41 0.426 0.434

673 17.63 0.331 0.418

683 18.28 0.290 0.414
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Fig. 9. Heat transfer coefficient distributions along a tube in
upward flow of water for various wall temperatures;
Re =5x10% T,, = 633 K, P = 24 MPa.

the wall and the inlet condition. Hence the increase of
heat transfer coefficient with wall temperature means an
increase in the wall heat flux, caused by the high fluid
temperature gradient at the wall.

When the wall temperature is set to the pseudocritical
temperature, the fluid specific heat is at a maximum at
the wall and thermal conductivity also has a small peak
value. Because of the combination of high specific heat
and thermal conductivity, the results show that the buoy-
ancy force is very important to flow in a gravity field with
heat transfer. Due to the high temperature gradient near
the wall the region of high thermal conductivity and
specific heat is confined narrowly near the wall. The high
diffusion and convection properties at the pseudocritical
temperature do not have an important effect on the heat
transfer or on momentum transfer in the tube. When the
wall temperature is 683 K, the heat transfer coefficient is
lower than at 673 K. This is due to the lower wall heat
flux which results from lower thermal conductivity,
although the buoyancy force is higher.

Figure 10 shows friction factor distributions along the
tube, based on the inlet condition. Friction factor also
depends on the wall temperature like the heat transfer
coefficient. Including the effect of buoyancy, the friction
factor increases after some distance from the entrance
that depends on the wall temperature. The axial position
where the friction factor starts to increase is nearer the
entrance (z/D < 1 for all wall temperature conditions)
compared with the heat transfer coefficient distribution.
This shows that the buoyancy effect is a greater factor in
momentum transfer than in heat transfer, although they
are interconnected. They buoyancy effect produces a high
velocity gradient near the wall. This results in a high
friction factor even though the viscosity decreases with
the increase of temperature.
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(x107) | — A -T, =653K

12 H--6--T =T
w pc
e -T =658K
H —=- T =663K .
- & T =613K ]
/8 8 l— —- ’Tw=683K ) -

Fig. 10. Friction factor distributions along a tube in upward
flow of water for various wall temperatures; Re = 5x 10%
T, = 633 K, P = 24 MPa.

4.4. Local heat transfer deterioration

In upward flow, turbulent transport is improved due
to fluid acceleration by the buoyancy force near the wall.
However this acceleration results in an M-shaped radial
profile of axial velocity to satisfy mass conservation, and
turbulent transport is suppressed due to the decrease of
turbulent viscosity [16]. This affects heat transfer and
temperature distributions in the tube.

Axial temperature distributions along the tube for sev-
eral radial positions in upward flow are shown in Fig.
11. Far from the wall or close to the wall, temperature
increases continuously along the tube with heat transfer
from the wall. At some radial positions, however, tem-
perature first increases, then decreases slightly, and then
increases again along the tube. In flow without gravity
forces included in the equations, this phenomenon is not
observed. It is apparently due to a local decrease of tur-
bulent viscosity combined with radial transport of fluid
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Fig. 11. Axial temperature distributions along a tube in upward
flow of water for various radial positions; Re = 5x 10%
T,=0633K, T, =673 K, P=24 MPa.
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from the colder fluid core. Figure 12 shows axial tur-
bulent viscosity and radial velocity distributions for a
radial location. At positions corresponding to an axial
temperature decrease along the tube, turbulent viscosity
values are low and radial velocity is high in the positive
direction. A local decrease of turbulent viscosity makes
convection important to the heat transfer, and an increase
of radial velocity to a locally positive value results in
moving of cool fluid from the core of the flow toward the
wall. These factors affect and apparently can reverse the
axial temperature gradient even though the magnitude of
the radial velocity is small.

4.5. Turbulent Prandtl number model

Most of the theoretical and numerical studies of near-
critical fluids use 0.9 or 1.0 for turbulent Prandtl number
as in the constant property case because there is little
information about the effect of property variations. The
effect of turbulent Prandtl number model on the differ-
ences in predictions from these studies and experimental
data are not well explained [29]. In the constant property
case, near the wall the turbulent Prandtl number is higher
than 1 and far from this region it is almost constant. The
varying turbulent Prandtl number near the wall might
result in different predictions from those obtained using
constant values of 0.9 or 1.0. It is useful to investigate
how different predicted results can be obtained by using
various models of turbulent Prandtl number, including
constant values and varying functions. If the effects of
using differing models are small for near-critical
conditions, then attention can be directed to other
factors.

We investigated the effect of several turbulent Prandtl
number models on heat transfer near the critical point.
The models and their corresponding figure labels are:

Pro 09 (a)
1.0 (b)
2.0/Pe,4+0.85 (c)

25 o
[ 4 0.002
20 | ]
- 0.001
15 ]
I’N 0 Vi,
10 f ]
1 -0.001
5 y* =0.04
4 -0.002
0" 1 | | | | 4
1 2 3 4 5
2D

Fig. 12. Turbulent viscosity and radial velocity distributions
along a tube in upward flow of water; Re = 5x 10%, T}, = 633
K, T, = 673K, P =24 MPa.
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The distributions or Pr, are shown in Fig. 13 for upward
and without-gravity flows. For both flows, Pr, values
near the wall for Kays” model [24] were higher than for
other models. It results in lower turbulent heat transport.
For upward flow, Pr, from models (c) and (d) is lower
than for flow without gravity because of the larger tur-
bulent eddy diffusivity caused by fluid acceleration. The
Pr, of Kays and Crawford’s model [23] approaches 0.9
far from the wall. For flow without gravity, this model
predicts a small peak in the region near the wall where
there are large property variations. For upward flow, this
peak does not appear. This is due to the large increase of
turbulent eddy diffusivity from the wall compared with
property variations (Prandtl number). For upward flow,
turbulent eddy diffusivity increases faster so that the
property variation effect on Pr is small.

The predicted distributions of heat transfer coefficient
and friction factor for the four different turbulent Prandtl
numbers are shown in Figs 14 and 15 for upward and
without-gravity flows. Because of acceleration near the
wall due to the buoyancy effect, the heat transfer
coefficient for upward flow is higher than that for flow
without gravity. The heat transfer coefficient for Pr, = 0.9
is higher than that for Pr, = 1.0 and Pr, = 2.0/Pe,+0.85,
and the differences between the heat transfer coefficients
using these turbulent Prandtl numbers do not vary sig-
nificantly along the tube for either flow condition
(z/D > 2). There is not much difference in heat transfer
coefficient along the tube between Pr, = 1.0 and the vari-
ation model (d) of Kays and Crawford [23] except near
the entrance (z/D < 2). At z/D =5, the heat transfer
coefficients calculated using Pr,=1.0 and Pr.-
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Fig. 13. Turbulent Prandtl number distributions in water for
various models; Re = 5x 10*, T}, = 633K, T,, = 673K, P = 24
MPa.
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Fig. 14. Comparison of heat transfer coefficient distributions
along a tube for various turbulent Prandtl number models for
water; Re = 5x 10%, T;, = 633 K, T\, = 673 K, P = 24 MPa.

(x107)
8 T T T T
- o0z 8B: EEQ
gom 89875
2@: - -©- - upward (a)
6 P - -B@- - upward (b)
%@Q --A--upward (c)
g --¢--upward (d)
/8 4 B - -® - - without gravity (a)
I - - ® - - without gravity (b)
- - A - - without gravity (c)
- - & - - without gravity (d)

Z_ R Y
> B 52200 oue-one nnn—a-mg—-
0 1 | - 1 P

8 10

=}
N}
IS
o

Fig. 15. Comparison of friction factor distributions along a
tube for various turbulent Prandtl number models for water;
Re=5x10% T, = 633K, T,, = 673 K, P = 24 MPa.

= 2.0/Pe;+0.85 are about 4.5 and 17.9% lower than for
Pr,= 0.9 for upward flow, while they are about 4.3 and
18.8% lower for flow without gravity.

Near the wall (in the thermal boundary layer), the ratio
of turbulent viscosity to molecular viscosity is small. This
results in high turbulent Prandtl number in the case of
Pr. = 2.0/Pe,+0.85, although far from the wall the ratio
is large enough to make the term (2.0/Pe,) very small. As
heat transfer is determined in this narrow region of the
thermal boundary layer, the heat transfer coefficient for
Pr,=2.0/Pe,+0.85 is lower than for Pr,=0.9 or
Pr.= 1.0. The friction factor is essentially unaffected by
the differences in the turbulent Prandtl number models;
the heat transfer coefficient is.

Although all of the effects are coupled, the results for
friction factor show that the changes in the thermal
boundary layer do not greatly affect the velocity dis-
tributions near the wall. There is at present no exper-
imental data to determine which value of Pr, produces
the best results. These numerical predictions serve to
show the effects of common models for Pr, on the mag-

nitude of / and f. The coupling of property variations
makes little difference in friction factor predictions, so
any model is adequate; however, care will have to be
taken in the choice of model for heat trans-
fer/temperature distribution predictions. This obser-
vation may guide experimentalists toward making careful
temperature distribution measurements for near-critical
conditions so that the choice of model can be made.

5. Conclusions

Turbulent convection heat transfer near the entrance
of a vertical tube is numerically investigated for water
near the critical point. A modified mixing length model
including the effect of density fluctuations is used for
turbulent diffusivity. Thermodynamic and transport
property variations as strong functions of both tem-
perature and pressure in the flow field affects momentum
and heat transport phenomena in the tube. When near
the critical pressure, fluid near the wall undergoes larger
acceleration due to buoyancy forces and the effect of
viscosity variation. Especially steep variations of fluid
density near the pseudocritical temperature result in high
buoyancy forces, which are important even at large Rey-
nolds number. This flow acceleration increases the heat
transfer coefficient near the pseudocritical temperature.

As the wall temperature increases for the same inlet
fluid condition, the heat transfer coefficient and friction
factor reach a minimum after some distance from the
entrance. The friction factor minimum is closer to the
entrance.

Local axial decreases in fluid temperature with tube
axial position are predicted to occur close to the wall in
upward flow. This phenomenon is related to suppressed
turbulent transport due to a local decrease of turbulent
eddy viscosity and radial convection of cooler tube-core
region fluid toward the wall.

Calculations are carried out for several models of tur-
bulent Prandtl number. Comparison of radial dis-
tributions in turbulent Prandtl number shows that for
variable Prandtl number models, turbulent Prandtl num-
ber near the wall for upward flow is lower than for flow
without consideration of the gravity force due to the
increase of turbulent eddy diffusivity by flow accel-
eration. This has a large effect on the heat transfer
coefficient distribution along the tube for both upward
and without-gravity flows, and a negligible effect on fric-
tion factor.

References

[11 R.G. Deissler, Heat transfer and fluid friction for fully
developed turbulent flow of air and supercritical water with



J.R. Howell, S.H. Lee/Int. J. Heat Mass Transfer 42 (1999) 11771187 1187

variable fluid properties, Transactions of ASME 76 (1954)
73-85.

[2] K. Goldman, Heat transfer to supercritical water and other
fluids with temperature dependent properties, Chem. Eng.
Prog. Symposium 50 (11) (1954) 105-113.

[3] M.E. Shitsman, Temperature conditions in tubes at super-
critical pressures, Teploenergetika 15 (1968) 57-61.

[4] B.S. Shiralkar, P. Griffith, Deterioration in heat transfer to

fluids at supercritical pressure and high heat fluxes, Journal

of Heat Transfer 91 (1) (1969) 27-36.

R.H. Sabersky, E.G. Hauptmann, Forced convection heat

transfer to carbon dioxide near the critical point, Inter-

national Journal of Heat and Mass Transfer 10 (1967)

1499-1508.

[6] R.C. Hendricks, R.J. Simoneau, R.V. Smith, Survey of
heat transfer to near critical fluids, NASA Technical Note,
1970, NASA TN D-5886.

[71 W.B. Hall, Heat transfer near the critical point, Advances
in Heat Transfer 7 (1971) 1-83.

[8] J.D. Jackson, W.B. Hall, Forced convection heat transfer

to fluids at supercritical pressure, Turbulent Forced Con-

vection in Channels and Bundles, Hemisphere, New York,

1979, pp. 563-611.

B.S. Petukhov, N.V. Medvetskaya, Turbulent flow and

heat transfer in heated tubes for single phase heat careers

with near critical parameters, Teplofizika Vysokikh Tem-

perature 17 (2) (1979) 343-350.

[10] A.J. Ghajar, A. Asadi, Improved forced convective heat
transfer correlations for liquids in the near critical region,
ATAA Journal 24 (1986) 2031-2037.

[11] A.F.Polyakov, Heat transfer under supercritical pressures,
Advances in Heat Transfer 21 (1991) 1-50.

[12] V.A. Kurganov, A.G. Kaptilnyi, Flow structure and tur-
bulent transport of a supercritical pressure fluid in a vertical
heated tube under the conditions of mixed convection
experimental data, International Journal of Heat and Mass
Transfer 36 (1993) 3383-3392.

[13] N.M. Schnurr, Numerical predictions of heat transfer to
supercritical helium in turbulent flow through circular
tubes, Journal of Heat Transfer 99 (1977) 580-585.

[14] C.P. Bellmore, R.L. Reid, Numerical prediction of wall
temperatures for near-critical para-hydrogen in turbulent
upflow inside vertical tubes, Journal of Heat Transfer 105
(1983) 536-541.

[15] E.P. Valueva, V.N. Popov, Numerical modeling of mixed

[5

=

[9

—

turbulent convection of water at subcritical and super-
critical pressure, Teploenergetika 32 (1985) 62-65.

[16] U. Renz, R. Bellinghausen, Heat transfer in a vertical pipe
at supercritical pressure, Proceedings of the 8th Inter-
national Heat Transfer Conference 3 (1986) 957-962.

[17] V.N. Popov, E.P. Valueva, Heat transfer and turbulent
flow of water at supercritical parameters of state in a ver-
tical tube with a significant effect of free convection, Teplo-
energetica 33 (1986) 22-29.

[18] S. Koshizuka, N. Takano, Y. Oka, Numerical analysis of
deterioration phenomena in heat transfer to supercritical
water, International Journal of Heat and Mass Transfer 38
(1995) 3077-3084.

[19] N.Zhou, A. Krishnan, Laminar and turbulent heat transfer
in flow of supercritical CO,, Proceedings of the 30th ASME
National Heat Transfer Conference, Portland 5 (1995) 53—
63.

[20] S.H. Lee, J.R. Howell, Laminar forced convection at zero-
gravity to water near the critical region, Journal of Ther-
mophysics and Heat Transfer 10 (1996) 504-510.

[21] S.H. Lee, J.R. Howell, Gravitational effects on laminar
forced convection heat transfer in a vertical tube for water
near the critical region, Journal of Thermophysics and Heat
Transfer 10 (1996) 627-632.

[22] S.H. Lee, J.R. Howell, Turbulent developing convective
heat transfer in a tube for fluids near the critical point, Int.
J. Heat Mass Transfer 41 (10) (1998) 1205-1218.

[23] W.M. Kays, M.E. Crawford, Convective Heat and Mass
Transfer, McGraw-Hill, 1993.

[24] W.M. Kays, Turbulent Prandtl number—where are we?,
Journal of Heat Transfer 116 (1994) 284-295.

[25] H. Lester, S.G. John, S.K. George, Steam Tables, Hemi-
sphere, New York, 1984.

[26] S.V. Patankar, Numerical Heat Transfer and Fluid Flow,
Hemisphere, Washington, DC, 1980.

[27] D.A. Anderson, J.C. Tannehill, R.H. Fletcher, Com-
putational Fluid Mechanics and Heat Transfer, McGraw-
Hill, 1984.

[28] R.C. Hendricks, A.K. Baron, J.C. Peller, GASP-A com-
puter code for calculating the thermodynamics and trans-
port properties for ten fluids, NASA Technical Note, 1975,
NASA TN D-7808.

[29] A.J. Reynolds, The prediction of turbulent Prandtl and
Schmidt numbers, International Journal of Heat and Mass
Transfer 18 (1975) 1055-1069.



